Search results

Search for "poly(methyl methacrylate) (PMMA)" in Full Text gives 72 result(s) in Beilstein Journal of Nanotechnology.

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • step that can compromise device performance and reliability, thus hindering industrial production. In this context, the impact of poly(methyl methacrylate) (PMMA), the most common support material for transferring graphene from the Cu substrate to any target surface, can be decisive in obtaining
  • (methyl methacrylate) (PMMA)-assisted process remains the most reliable and most commonly used approach [18]. The chemical structure of PMMA features long polymer chains, whose length is proportional to the average molecular weight (AMW) of the polymer. During the transfer of graphene, the polymer serves
  • ., Cu or Ni) to the desired target substrate (e.g., SiO2/Si, glass, or flexible polymers) often introduces inconsistencies among devices [10]. Various approaches have been developed to address this issue and establish a reproducible transfer process [11][12][13][14][15][16][17]. Among the many, the poly
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • their biocompatibility, biodegradability, and potential for mass production [12]. Polymers such as polylactic acid (PLA), poly(methyl methacrylate) (PMMA), poly(carbonate), cyclic olefin copolymer (COC) and cycloolefin polymers (COP), polystyrene, and SU-8 photoresists, have all been used for
PDF
Album
Full Research Paper
Published 08 Jul 2022

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • copper foil with methane gas as the precursor [31]. Next, graphene was transferred onto GaN NWs substrates. Due to low adhesive forces between graphene and corrugated substrates, the most common method to transfer graphene with the use of poly(methyl methacrylate) (PMMA) polymer could not be applied for
PDF
Album
Full Research Paper
Published 22 Jun 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • the Ag layer by putting it into a 1 M Fe(NO3)3 solution for 24 h, the sample was protected by a 400 nm thick layer of poly(methyl methacrylate) (PMMA). In a next step, the CNM/EBID/PMMA hybrid structure was transferred onto a SiO2 substrate. Finally, the PMMA was dissolved in acetone. The results for
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • on imprecise parameters such as the tip position on the cantilever. This article shows quantitative CR measurements on polymer films of polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n-butyl methacrylate) (PnBMA), as well as glass. Current analysis methods are simplified to a point that
  • moduli. Experimental Materials Contact-resonance measurements have been performed on films of polystyrene (PS, average Mw ≅ 280,000), poly(methyl methacrylate) (PMMA, average Mw ≅ 120,000), and poly(n-butyl methacrylate) (PnBMA, average Mw ≅ 337,000). All polymers have been purchased from Sigma-Aldrich
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • materials over the entire depth of their penetration path in a target. In our recent work [4], we demonstrated that, in addition to the direct surface patterning by the abovementioned techniques, the radiation damage generated by He+ FIB in the bulk of poly(methyl methacrylate) (PMMA) substrates can be used
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • nanoparticles and a poly(methyl methacrylate) (PMMA) patterning were etched in a diluted HF/H2O2 solution for 10 min. The process was a single-wafer bath process and can be scaled up to a batch process easily. As a reference, one wafer with gold nanoparticles was etched in a HF solution (1.73 mol/L) without the
PDF
Album
Full Research Paper
Published 23 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • are incompatible with PAN, such as polystyrene (PS), poly(ʟ-lactic acid) (PLLA) and poly(methyl methacrylate) (PMMA) [20][21][22][23]. During the carbonization process at a high temperature, PAN and the blended polymers undergo phase separation, forming a large number of pores which increases the
PDF
Album
Full Research Paper
Published 27 Aug 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • have previously been difficult to obtain as sample preparation of such samples for SEM or TEM are often incompatible with the needs of high-resolution AFM measurements. AFM is also useful in assisting helium ion beam lithography. Many resists, including poly(methyl methacrylate) (PMMA), have higher
PDF
Album
Full Research Paper
Published 26 Aug 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • . Single-layer graphene was synthesized by chemical vapor deposition (CVD) on a copper substrate and transferred by a standard technique using poly(methyl methacrylate) (PMMA) onto a SiO2 (300 nm)/Si substrate as reported elsewhere [30]. This process is optimized with regard to minimal PMMA contamination
PDF
Album
Full Research Paper
Published 19 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • (analytical grade). Poly(methyl methacrylate) (PMMA) as the dielectric layer was used as purchased from MicroChem, with a molecular weight of 350,000 and a concentration of 4% in anisole (analytical grade). Preparation of the PDMS/SiO2 composite template via dry blending The experimental procedure for
PDF
Album
Full Research Paper
Published 20 Apr 2020

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • collected in a poly(methyl methacrylate) (PMMA) chamber (volume: 50 L), the volume of which was calibrated using the following Equation 1: Vx is the volume of the liquid (μL), c is the concentration of the gas to be allocated (ppm), V is the volume of the collection vessel (mL), M is the molecular weight of
PDF
Album
Full Research Paper
Published 16 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • where the optimized enhancement factor was determined to be 8.6 × 106. Zhong et al. [11] presented nanoparticles formed by HAuCl3 and sodium citrate solutions on the poly(methyl methacrylate) (PMMA) template as a transparent SERS substrate. Then, malachite green at a concentration of 0.1 nmol/L was
PDF
Album
Full Research Paper
Published 13 Dec 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • , Anhui, China 10.3762/bjnano.10.159 Abstract Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the
  • unambiguous subsurface imaging. In this work, facing the demands and challenges mentioned above, CR-AFM subsurface imaging was performed on a series of multilayer flexible circuits. Model samples were employed that consist of Au circuit patterns embedded in a poly(methyl methacrylate) (PMMA) polymer matrix
PDF
Album
Full Research Paper
Published 07 Aug 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • poly(methyl methacrylate) (PMMA) [14]. However, apart from the flexible substrates, also flexible nanostructures are reported on conventional, solid SERS substrates [19][20][21]. In these reports, vertically oriented silicon nanopillars in contact with a liquid would lean towards each other, trapping
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • other pure materials such as SiO2, polyimide, polyethylene, alumina (Al2O3), benzocyclobutenes (BCB) and SiO2/poly(methyl methacrylate) (PMMA), nanocomposite parylene C (NCPC) exhibits some interesting properties [39][40][41][42][43][44][45][46][47]. As an example, parylene C/Silica nanocomposites show
PDF
Album
Full Research Paper
Published 12 Feb 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • in cold tap water. Scanning electron microscopy (SEM) images were taken with a Zeiss CrossBeam 1540XB. An Olympus BX51 optical microscope with a 250× objective was employed for bright-field optical images. For reference samples prepared by electron-beam lithography, poly(methyl methacrylate) (PMMA
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
PDF
Album
Review
Published 14 Nov 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • , we diluted the sample in a poly(methyl methacrylate) (PMMA) solution in toluene and spin-coated them onto the sample. The phototransition is realized by illuminating the sample with a Xe lamp filtered with a 400 nm low-pass filter. The excitation lasts two minutes and the polymer film becomes violet
PDF
Album
Full Research Paper
Published 08 Oct 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • with scales from S. scincus (provided by G. Gassner, Natural History Museum, Vienna, Austria). These were not tested for their content of glycans [16]. For comparison, we also analysed technical materials such as graphite, Teflon, poly(methyl methacrylate) (PMMA), polyether ether ketone (PEEK
PDF
Album
Full Research Paper
Published 02 Oct 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • plasma oxidization [53], electron beam curing, as well as laser and/or selective decomposition (as reported in Table 1). Hozumi and co-workers [74] investigated the removal of poly(methyl methacrylate) (PMMA) domains in a PS-b-PMMA copolymer film by using 172 nm vacuum-ultraviolet (VUV) light. In this
PDF
Album
Review
Published 29 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • -assisted wet-chemical method was employed to transfer the MoS2 layer on conducting substrates [20]. A layer of poly(methyl methacrylate) (PMMA), 200 nm thick, was coated onto the surface of the MoS2/SiO2/Si sample surface (PMMA/MoS2/SiO2/Si), then floated on buffered oxide etchant. After leaving it
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • with the methyl methacrylate (MMA) monomer. The resulting suspension of magnetic nanoparticles decorated with poly(methyl methacrylate) (PMMA) chains in toluene were colloidal, even in the presence of a magnetic field gradient. Nanocomposites were precipitated from these suspensions. The transmission
  • putty that hardens at body temperature [14]. Typically, the liquid component is (MMA) and the powder component is a polymer with additives that enable rapid hardening at body temperature [14]. One of such polymers is poly(methyl methacrylate) (PMMA). It is an amorphous, linear thermoplastic having good
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Evaluation of replicas manufactured in a 3D-printed nanoimprint unit

  • Manuel Caño-García,
  • Morten A. Geday,
  • Manuel Gil-Valverde,
  • Xabier Quintana and
  • José M. Otón

Beilstein J. Nanotechnol. 2018, 9, 1573–1581, doi:10.3762/bjnano.9.149

Graphical Abstract
  • to qualify any material as appropriate; therefore a larger than usual number of samples (more than 100) were prepared. Both, thermally curable and UV-curable materials have been tested: Ormostamp®, NOA81, SU8 photoresist, Microposit S1818 photoresist, and poly(methyl methacrylate) (PMMA). Ormostamp
PDF
Album
Full Research Paper
Published 28 May 2018
Other Beilstein-Institut Open Science Activities